Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Metabolites ; 14(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38786726

ABSTRACT

The metabolic reprogramming that promotes tumorigenesis in glioblastoma is induced by dynamic alterations in the hypoxic tumor microenvironment, as well as in transcriptional and signaling networks, which result in changes in global genetic expression. The signaling pathways PI3K/AKT/mTOR and RAS/RAF/MEK/ERK stimulate cell metabolism, either directly or indirectly, by modulating the transcriptional factors p53, HIF1, and c-Myc. The overexpression of HIF1 and c-Myc, master regulators of cellular metabolism, is a key contributor to the synthesis of bioenergetic molecules that mediate glioma cell transformation, proliferation, survival, migration, and invasion by modifying the transcription levels of key gene groups involved in metabolism. Meanwhile, the tumor-suppressing protein p53, which negatively regulates HIF1 and c-Myc, is often lost in glioblastoma. Alterations in this triad of transcriptional factors induce a metabolic shift in glioma cells that allows them to adapt and survive changes such as mutations, hypoxia, acidosis, the presence of reactive oxygen species, and nutrient deprivation, by modulating the activity and expression of signaling molecules, enzymes, metabolites, transporters, and regulators involved in glycolysis and glutamine metabolism, the pentose phosphate cycle, the tricarboxylic acid cycle, and oxidative phosphorylation, as well as the synthesis and degradation of fatty acids and nucleic acids. This review summarizes our current knowledge on the role of HIF1, c-Myc, and p53 in the genic regulatory network for metabolism in glioma cells, as well as potential therapeutic inhibitors of these factors.

2.
Int J Mol Sci ; 24(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38139462

ABSTRACT

Glioma cells exhibit genetic and metabolic alterations that affect the deregulation of several cellular signal transduction pathways, including those related to glucose metabolism. Moreover, oncogenic signaling pathways induce the expression of metabolic genes, increasing the metabolic enzyme activities and thus the critical biosynthetic pathways to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates that are essential to accomplish the biosynthetic needs of glioma cells. In this review, we aim to explore how dysregulated metabolic enzymes and their metabolites from primary metabolism pathways in glioblastoma (GBM) such as glycolysis and glutaminolysis modulate anabolic and catabolic metabolic pathways as well as pro-oncogenic signaling and contribute to the formation, survival, growth, and malignancy of glioma cells. Also, we discuss promising therapeutic strategies by targeting the key players in metabolic regulation. Therefore, the knowledge of metabolic reprogramming is necessary to fully understand the biology of malignant gliomas to improve patient survival significantly.


Subject(s)
Glioblastoma , Glioma , Humans , Glioblastoma/genetics , Glioblastoma/metabolism , Glutamine/metabolism , Metabolic Reprogramming , Glycolysis/physiology , Glioma/pathology , Signal Transduction , Apoptosis , Cell Proliferation/physiology
3.
Pharmaceuticals (Basel) ; 12(3)2019 Sep 07.
Article in English | MEDLINE | ID: mdl-31500285

ABSTRACT

Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Currently, treatment is ineffective and the median overall survival is 20.9 months. The poor prognosis of GBM is a consequence of several altered signaling pathways that favor the proliferation and survival of neoplastic cells. One of these pathways is the deregulation of phosphodiesterases (PDEs). These enzymes participate in the development of GBM and may have value as therapeutic targets to treat GBM. Methylxanthines (MXTs) such as caffeine, theophylline, and theobromine are PDE inhibitors and constitute a promising therapeutic anti-cancer agent against GBM. MTXs also regulate various cell processes such as proliferation, migration, cell death, and differentiation; these processes are related to cancer progression, making MXTs potential therapeutic agents in GBM.

4.
Int J Nanomedicine ; 12: 6005-6026, 2017.
Article in English | MEDLINE | ID: mdl-28860763

ABSTRACT

Despite multiple advances in the diagnosis of brain tumors, there is no effective treatment for glioblastoma. Multiwalled carbon nanotubes (MWCNTs), which were previously used as a diagnostic and drug delivery tool, have now been explored as a possible therapy against neoplasms. However, although the toxicity profile of nanotubes is dependent on the physicochemical characteristics of specific particles, there are no studies exploring how the effectivity of the carbon nanotubes (CNTs) is affected by different methods of production. In this study, we characterize the structure and biocompatibility of four different types of MWCNTs in rat astrocytes and in RG2 glioma cells as well as the induction of cell lysis and possible additive effect of the combination of MWCNTs with temozolomide. We used undoped MWCNTs (labeled simply as MWCNTs) and nitrogen-doped MWCNTs (labeled as N-MWCNTs). The average diameter of both pristine MWCNTs and pristine N-MWCNTs was ~22 and ~35 nm, respectively. In vitro and in vivo results suggested that these CNTs can be used as adjuvant therapy along with the standard treatment to increase the survival of rats implanted with malignant glioma.


Subject(s)
Brain Neoplasms/drug therapy , Glioma/drug therapy , Nanotubes, Carbon , Neoplasms, Experimental/drug therapy , Animals , Apoptosis/drug effects , Astrocytes/drug effects , Brain Neoplasms/pathology , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Glioma/pathology , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/toxicity , Rats
5.
EBioMedicine ; 21: 94-103, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28679472

ABSTRACT

Glioblastoma (GBM) is the most aggressive primary brain tumor in adults. The mechanisms that confer GBM cells their invasive behavior are poorly understood. The electroneutral Na+-K+-2Cl- co-transporter 1 (NKCC1) is an important cell volume regulator that participates in cell migration. We have shown that inhibition of NKCC1 in GBM cells leads to decreased cell migration, in vitro and in vivo. We now report on the role of NKCC1 on cytoskeletal dynamics. We show that GBM cells display a significant decrease in F-actin content upon NKCC1 knockdown (NKCC1-KD). To determine the potential actin-regulatory mechanisms affected by NKCC1 inhibition, we studied NKCC1 protein interactions. We found that NKCC1 interacts with the actin-regulating protein Cofilin-1 and can regulate its membrane localization. Finally, we analyzed whether NKCC1 could regulate the activity of the small Rho-GTPases RhoA and Rac1. We observed that the active forms of RhoA and Rac1 were decreased in NKCC1-KD cells. In summary, we report that NKCC1 regulates GBM cell migration by modulating the cytoskeleton through multiple targets including F-actin regulation through Cofilin-1 and RhoGTPase activity. Due to its essential role in cell migration NKCC1 may serve as a specific therapeutic target to decrease cell invasion in patients with primary brain cancer.


Subject(s)
Actin Depolymerizing Factors/metabolism , Actins/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Solute Carrier Family 12, Member 2/genetics , Solute Carrier Family 12, Member 2/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cytoskeleton/metabolism , Gene Expression , Humans , Protein Binding , Protein Transport , rac1 GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/metabolism
6.
Biomed Res Int ; 2016: 7487313, 2016.
Article in English | MEDLINE | ID: mdl-27294132

ABSTRACT

Glioblastoma is the most aggressive tumor in Central Nervous System in adults. Among its features, modulation of immune system stands out. Although immune system is capable of detecting and eliminating tumor cells mainly by cytotoxic T and NK cells, tumor microenvironment suppresses an effective response through recruitment of modulator cells such as regulatory T cells, monocyte-derived suppressor cells, M2 macrophages, and microglia as well as secretion of immunomodulators including IL-6, IL-10, CSF-1, TGF-ß, and CCL2. Other mechanisms that induce immunosuppression include enzymes as indolamine 2,3-dioxygenase. For this reason it is important to develop new therapies that avoid this immune evasion to promote an effective response against glioblastoma.


Subject(s)
Brain Neoplasms/immunology , Brain/immunology , Glioblastoma/immunology , Immunity, Innate/immunology , Leukocytes, Mononuclear/immunology , Tumor Escape/immunology , Animals , Cytokines/immunology , Humans , Models, Immunological
7.
Biol Res ; 49: 7, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26830333

ABSTRACT

BACKGROUND: Aged garlic extract (AGE) and its main constituent S-allylcysteine (SAC) are natural antioxidants with protective effects against cerebral ischemia or cancer, events that involve hypoxia stress. Cobalt chloride (CoCl2) has been used to mimic hypoxic conditions through the stabilization of the α subunit of hypoxia inducible factor (HIF-1α) and up-regulation of HIF-1α-dependent genes as well as activation of hypoxic conditions such as reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential and apoptosis. The present study was designed to assess the effect of AGE and SAC on the CoCl2-chemical hypoxia model in PC12 cells. RESULTS: We found that CoCl2 induced the stabilization of HIF-1α and its nuclear localization. CoCl2 produced ROS and apoptotic cell death that depended on hypoxia extent. The treatment with AGE and SAC decreased ROS and protected against CoCl2-induced apoptotic cell death which depended on the CoCl2 concentration and incubation time. SAC or AGE decreased the number of cells in the early and late stages of apoptosis. Interestingly, this protective effect was associated with attenuation in HIF-1α stabilization, activity not previously reported for AGE and SAC. CONCLUSIONS: Obtained results show that AGE and SAC decreased apoptotic CoCl2-induced cell death. This protection occurs by affecting the activity of HIF-1α and supports the use of these natural compounds as a therapeutic alternative for hypoxic conditions.


Subject(s)
Antioxidants/pharmacology , Apoptosis/drug effects , Basic Helix-Loop-Helix Transcription Factors/drug effects , Cysteine/analogs & derivatives , Garlic/chemistry , Plant Extracts/pharmacology , Analysis of Variance , Animals , Cell Hypoxia/drug effects , Cell Survival/drug effects , Cells, Cultured , Cobalt , Cysteine/pharmacology , Flow Cytometry , Formazans , PC12 Cells , Rats , Reactive Oxygen Species/analysis , Tetrazolium Salts
8.
Front Biosci (Schol Ed) ; 8(1): 13-28, 2016 01 01.
Article in English | MEDLINE | ID: mdl-26709893

ABSTRACT

Multiple sclerosis (MS) is a disease presumably associated with chronic immune stimulation promoted by either pathogens or autoimmune processes. It has been hypothesized that MS could be the result of previous viral infections rendering a permanent immune stimulation that could be triggered by molecular similarities, or by modulating the antigens expression of major histocompatibility complex (MHC) on target cells, which in turn act as super antigens. During immune stimulation occurs the recruitment of immunological cells, resulting in local tissue damage and leading to the release of damage- associated molecular patterns (DAMPs), which also act as inflammation inducers. Recently, it has been proposed that the association between pathogen-associated molecular patterns (PAMPs) with DAMPs constitutes an additional level of immune regulation. The properties of DAMPs to act as carriers of PAMPs and their role as enhancers or inhibitors of PAMPs could play a role during inflammatory responses triggered by infections. Here, we focused this review in outcomes which support the hypothesis that particular PAMP-DAMPs interactions could regulated the relapse and progressive disability observed in multiple sclerosis.


Subject(s)
Multiple Sclerosis/immunology , Pathogen-Associated Molecular Pattern Molecules/immunology , Animals , Disease Progression , Humans , Inflammation/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Toll-Like Receptors/metabolism
9.
Biol. Res ; 49: 1-10, 2016. ilus, graf
Article in English | LILACS | ID: biblio-950834

ABSTRACT

BACKGROUND: Aged garlic extract (AGE) and its main constituent S-allylcysteine (SAC) are natural antioxidants with protective effects against cerebral ischemia or cancer, events that involve hypoxia stress. Cobalt chloride (CoCl2) has been used to mimic hypoxic conditions through the stabilization of the α subunit of hypoxia inducible factor (HIF-1α) and up-regulation of HIF-1α-dependent genes as well as activation of hypoxic conditions such as reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential and apoptosis. The present study was designed to assess the effect of AGE and SAC on the CoCl2-chemical hypoxia model in PC12 cells. RESULTS: We found that CoCl2 induced the stabilization of HIF-1α and its nuclear localization. CoCl2 produced ROS and apoptotic cell death that depended on hypoxia extent. The treatment with AGE and SAC decreased ROS and protected against CoCl2-induced apoptotic cell death which depended on the CoCl2 concentration and incubation time. SAC or AGE decreased the number of cells in the early and late stages of apoptosis. Interestingly, this protective effect was associated with attenuation in HIF-1α stabilization, activity not previously reported for AGE and SAC. CONCLUSIONS: Obtained results show that AGE and SAC decreased apoptotic CoCl2-induced cell death. This protection occurs by affecting the activity of HIF-1α and supports the use of these natural compounds as a therapeutic alternative for hypoxic conditions


Subject(s)
Animals , Rats , Plant Extracts/pharmacology , Apoptosis/drug effects , Cysteine/analogs & derivatives , Basic Helix-Loop-Helix Transcription Factors/drug effects , Garlic/chemistry , Antioxidants/pharmacology , Tetrazolium Salts , Cell Hypoxia/drug effects , Cell Survival/drug effects , Cells, Cultured , Analysis of Variance , PC12 Cells , Reactive Oxygen Species/analysis , Cobalt , Cysteine/pharmacology , Flow Cytometry , Formazans
10.
J Cancer Res Clin Oncol ; 140(2): 291-301, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24337403

ABSTRACT

PURPOSE: Glioblastoma multiforme is the most frequent primary brain tumor, it has poor prognosis, and it remains refractory to current treatment. The success of temozolomide (TMZ) appears to be limited by the occurrence of chemoresistance. Recently, we report the use of pertussis toxin as adjuvant immunotherapy in a C6 glioma model; showing a decrease in tumoral size, it induced selective cell death in Treg cells, and it elicited less infiltration of tumoral macrophages. Here, we evaluated the cytotoxic effect of pertussis toxin in combination with TMZ for glioma treatment, both in vitro and in vivo RG2 glioma model. METHODS: We determined cell viability, cell cycle, apoptosis, and autophagy on treated RG2 cells through flow cytometry, immunofluorescence, and Western blot assays. Twenty-eight rats were divided in four groups (n = 7) for each treatment. After intracranial implantation of RG2 cells, animals were treated with TMZ (10 mg/Kg/200 µl of apple juice), PTx (2 µg/200 µl of saline solution), and TMZ + PTx. Animals without treatment were considered as control. RESULTS: We found an induction of apoptosis in around 20 % of RG2 cells, in both single treatments and in their combination. Also, we determined the presence of autophagy vesicles, without any modifications in the cell cycle in the TMZ - PTx-treated groups. The survival analyses showed an increase due to individual treatments; while in the group treated with the combination TMZ - PTx, this effect was enhanced. CONCLUSION: We show that the concomitant use of pertussis toxin plus TMZ could represent an advantage to improve the glioma treatment.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Dacarbazine/analogs & derivatives , Disease Models, Animal , Glioma/drug therapy , Glioma/mortality , Pertussis Toxin/therapeutic use , Animals , Antineoplastic Combined Chemotherapy Protocols , Apoptosis/drug effects , Autophagy , Blotting, Western , Brain Neoplasms/drug therapy , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Cell Cycle/drug effects , Cell Proliferation/drug effects , Dacarbazine/therapeutic use , Glioma/pathology , Male , Rats , Rats, Wistar , Survival Rate , Temozolomide
11.
Biomed Res Int ; 2013: 351031, 2013.
Article in English | MEDLINE | ID: mdl-23691498

ABSTRACT

Glioblastoma multiforme (GBM) is one of the most deadly diseases that affect humans, and it is characterized by high resistance to chemotherapy and radiotherapy. Its median survival is only fourteen months, and this dramatic prognosis has stilled without changes during the last two decades; consequently GBM remains as an unsolved clinical problem. Therefore, alternative diagnostic and therapeutic approaches are needed for gliomas. Nanoparticles represent an innovative tool in research and therapies in GBM due to their capacity of self-assembly, small size, increased stability, biocompatibility, tumor-specific targeting using antibodies or ligands, encapsulation and delivery of antineoplastic drugs, and increasing the contact surface between cells and nanomaterials. The active targeting of nanoparticles through conjugation with cell surface markers could enhance the efficacy of nanoparticles for delivering several agents into the tumoral area while significantly reducing toxicity in living systems. Nanoparticles can exploit some biological pathways to achieve specific delivery to cellular and intracellular targets, including transport across the blood-brain barrier, which many anticancer drugs cannot bypass. This review addresses the advancements of nanoparticles in drug delivery, imaging, diagnosis, and therapy in gliomas. The mechanisms of action, potential effects, and therapeutic results of these systems and their future applications in GBM are discussed.


Subject(s)
Brain Neoplasms/diagnosis , Brain Neoplasms/drug therapy , Glioma/diagnosis , Glioma/drug therapy , Nanoparticles/therapeutic use , Animals , Antibodies , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...